
UNCLASSIFIED

UNCLASSIFIED

TARGET CLASSIFICATION VIA SUPPORT VECTOR MACHINES

Robert E. Karlsen, David J. Gorsich and Grant R. Gerhart

U.S. Army Tank Automotive Research, Development and Engineering Center
Warren, MI 48397-5000

ABSTRACT

The area of automatic target classification has been a difficult problem
for many years. Many approaches involve extracting information from the
imagery through a variety of statistical filtering and sampling techniques,
resulting in a reduced dimension feature vector, which can then be input to a
learning algorithm. In this paper, we outline a method that is virtually
independent of feature vector size and can therefore be applied to entire images,
so that the feature extraction and learning algorithm are combined into one. We
present the results of two image classification tests, both of which yielded
excellent results.

Introduction

The problem that we address in this paper is image classification. Specifically, we consider algorithms that
can take as input a digital image and classify it according to some criterion. Often this is a three-step process,
consisting of pre-processing, feature extraction, and decision algorithm. The pre-processing is used to remove
redundant information or to transform the image to a space where the objects are more easily classified. We have
used the multiresolution approach in previous applications, implemented through the fast wavelet transform1-3. The
feature extraction step is employed to reduce the dimensionality of the problem. Examples of features include peaks
in the Fourier spectrum, statistical measures of edge densities, multiresolution energies or a histogram of gray levels.
The final step is the decision module, which takes as input the lower dimension feature vector and outputs the
classification. Often the decision algorithm is also a learning algorithm. In this case, a sufficiently large number of
sample images, with their associated classification, are presented to the algorithm. The algorithm then adjusts certain
parameters in order to satisfy a minimum error criterion.

The typical learning algorithm is a neural network (fuzzy logic systems generally have an embedded neural
network for automated learning). The reason that feature vector selection is so important for neural networks
(specifically back-propagation neural networks) is that the complexity of the network scales with the size of feature
vectors. In fact, the number of free parameters that must be determined is proportional to the size of the feature
vector and is often many times larger. This generally necessitates a large number of training samples in order to
constrain the error minimization sufficiently.

The Support Vector Machine (SVM) algorithm4-6 avoids many of these problems. Here, only the dot
product between feature vectors enters the problem. Therefore, the length of the feature vector has little effect on the
computational complexity of the algorithm. By design, SVM is a large margin classifier, and can give reasonable
results even for sparse training sets, where the number of samples may be less than the size of the feature vector.
SVM can also be made resistant to outliers of a given size, by adjusting a cost parameter.

The paper begins by providing a brief tutorial on Support Vector Machines and outlining derivations of
some of the important elements. We then use the SVM algorithm on two data sets, the first is a standard handwritten
digit data set7, derived from two NIST data sets, and the second is a collection of images of military vehicles. Both
of these were classified accurately with SVM. We conclude by summarizing our results and indicating the future
direction of our research.

UNCLASSIFIED

UNCLASSIFIED

Support Vector Machines

To introduce the Support Vector Machine
(SVM), we first consider a linearly separable problem;
i.e. the data can be separated completely by a
hyperplane. Figure 1 shows an example in two
dimensions, where the hyperplane is a line. The object
is to find the best hyperplane that separates the data
into two classes, where, by ‘best’ we mean the
hyperplane that gives the best classification results
when new data is used.

The SVM algorithm4-6 is based on finding a
pair of parallel hyperplanes, which separate the data
and which have the largest perpendicular distance
between them. It is conjectured that this will provide a
good approximation to the ‘best’ separating
hyperplane. Each data point is described by a feature
vector x and a truth value y, the latter of which can
take the values of +1 or –1, depending on the class.
The two hyperplanes are required to pass through at
least one point of each class and there can be no points between them. The boundary between the classes is then
defined to be a third parallel hyperplane that is halfway between the other two. The data points that the outer
hyperplanes pass through, which are circled in Fig. 1, are called the support vectors, the meaning of which will be
explained later. The two outer hyperplanes are described by the following expressions,

 w ⋅ x + b = +1 ,
 w ⋅ x + b = −1 , (1)

with the first going through a point of class y=+1 and the second going through a point of class y=–1. The constants
 w and b define the hyperplanes, with w being normal to the hyperplanes and − b / ||w || being the perpendicular
distance from the origin to the middle hyperplane. The RHS of Eq. (1) will be greater than or equal to +1 for all
points of class y=+1 and will be less than or equal to –1 for all points of class y=–1. These can be combined into the
following constraint on all the data points,

 yi w ⋅ x i + b()− 1 ≥ 0 . (2)

The perpendicular distance between the two outer hyperplanes is equal to 2 / || w ||. Therefore, finding the
hyperplanes with the largest margin reduces to finding values for w and b that minimize || w ||2 , subject to the
constraint in Eq. (2).

A standard method for handling optimization problems with constraints is through the minimization of a
Lagrangian8-10. The constraints are taken into account by adding terms involving Lagrange multipliers to the
objective function. In this case, this results in the following primal Lagrangian4-6,

LP =

1
2

||w ||2 − i yi w ⋅ x i + b()∑ + i∑ (3)

where i are the Lagrange multipliers associated with each of the constraints in (2). Notice that at the boundary of
the constraint equation (2), the extra terms added in (3) are zero. As one moves away from the boundary, the
Lagrangian becomes smaller. Because the constraints are inequalities, bounded from below, the Lagrange
multipliers are required to be non-negative.

Fig. 1: Linearly separable data.

UNCLASSIFIED

UNCLASSIFIED

Setting the derivative of the Lagrangian in (3) with respect to w and b (the primal variables) equal to zero,
results in the following expressions,

 w = i yi x i∑ , (4a)

 i yi∑ = 0 , (4b)

while from the definition of the Lagrange multipliers, we obtain,

 i yi w ⋅ x i + b()− 1()= 0 . (4c)

Inserting Eqs. (4a) and (4b) into (3), results in the dual Lagrangian,

LD = i∑ −

1
2 i j yi y j x i ⋅∑ x j . (5)

The problem is now reduced to finding the Lagrange
multipliers (the dual variables) that maximize Eq. (5)
and satisfy both the non-negativity constraints and
the constraints of Eq. (4b). Equation (4c) means that
only those data points which lie on the outer
hyperplanes (and hence are active constraints) will
have non-zero Lagrange multipliers. These data
points are called the support vectors and they are the
points that determine the position of the hyperplanes.
One can move the other points around the feature
space or remove them entirely and the solution will
not change, provided one does not move a point
across one of the outer hyperplanes.

The relationships in Eqs. (4), together with
the constraints in Eq. (2) and the non-negativity
constraints on the Lagrange multipliers make up what
are known as the Karush-Kuhn-Tucker8-12 (KKT)
conditions for this particular problem. The KKT
conditions are general rules that arise in constrained
optimization problems, and finding solutions that
obey them generally results in an optimal solution. Since SVM is a quadratic-programming problem (the objective
function, || w ||2 , is quadratic) with linear constraints, the KKT conditions are necessary and sufficient for the
resulting w , b and α to be an optimal solution. One can solve Eq. (5) using any quadratic programming solver,
although different solvers perform better on different types of problems6,8-10. Solving the quadratic programming
problem is actually one of the most difficult parts of SVM and will not be discussed further in this paper.

Once the Lagrange multipliers are known, the solution for w is given by Eq. (4a), where the sum is over the
support vectors, since they are the only ones with non-zero . One can find b from Eq. (4c), using any of the support
vectors, although one generally averages over all the support vectors for better accuracy. Once these constants are
known, the classification of an unknown vector, v , is given by the sign of,

 b+ i yi∑ x i ⋅ v , (6)

where the sum is over the support vectors. This determines on which side of the boundary (or middle) hyperplane
that the data point falls.

Fig. 2: Non-linearly separable data.

UNCLASSIFIED

UNCLASSIFIED

Now suppose that the boundary between the data is nonlinear. An example of this situation is shown in Fig.
2. One cannot separate the two classes with a straight line. The structure of the SVM equations allows a simple
solution to this situation. Map the data, through a nonlinear transformation , to a different space, where the data can
be separated with a hyperplane. This results in the Lagrangian in (5) being transformed to,

LD = i∑ −

1
2 i j yi y j (x i) ⋅∑ (x j) , (7)

and the classification relation in Eq. (6) becomes,

 b+ i yi∑ (x i) ⋅ (v) . (8)

Since Eqs. (7) and (8) depend only on the dot product between the two transformed feature vectors, one can employ
a kernel function,

 K (x , y) = (x) ⋅ (y) , (9)

and never need to computer the transformation explicitly. Equation (8) then becomes,

 b+ i yi∑ K (x i , v) , (10)

with the test feature vector now inside the summation over the support vectors.

In general, the mapping will be to a higher dimensional space. For example, suppose the data is in two
dimensions and the kernel is K (x , y) = (x ⋅ y)2 , then the mapping could be to three dimensions (but not to two) with
either of the transformations (among others)5,

(x) =

x1
2

2x1x2

x2
2

 or

(x) =
1

2

x1
2 − x2

2

2x1x2

x1
2 + x2

2

, (11)

or the mapping could be to four dimensions,

(x) =

x1
2

x1x2

x1x2

x2
2

,
(12)

where the subscripts in all cases refer to components of the vector x . The kernel remains the same in each case and
the resulting classification results are identical. Since one is still solving the linear problem, just in a different space,
the computational overhead is essentially the same. The solution and parameters for the hyperplane are in the higher
dimensional space and when one transforms back to the original space the boundary becomes nonlinear. However,
there is, in general, no way to analytically invert the solutions for w and b. Hence, one must use Eq. (10) to classify
test feature vectors.

The advantage to using the kernel approach is that the higher dimensional (or embedding) space is
essentially hidden from the user. One, in fact, never needs to know the function . It could even be of infinite
dimension. The disadvantage is that one must use Eq. (10) to classify each test vector and if there are a large number
of support vectors, the testing phase can be somewhat slow. On the other hand, for low dimension problems, one
could work in the embedding space and compute w once, via Eq. (4a), with the support vectors also transformed to

UNCLASSIFIED

UNCLASSIFIED

the embedding space, as in Eq. (8). Then one can simply transform the test vector to the embedding space and
compute a single dot product to classify a feature vector. The problem is dimensionality. For example, with the
homogenous polynomial kernel, K (x , y) = (x ⋅ y) p , the dimension of the embedding space is5,

(d + p− 1)!
(d − 1)! p!

,
(13)

where d is the dimension of the feature vector. With a 10x10 image, the feature vector has 100 elements and, using a
kernel with p=2, results in the dimension being 5,050. However, with p=4, the dimension becomes 4,421,275 and so
computing the feature vector in the embedding space becomes problematic. The computation of the higher
dimensional feature vector is proportional to d

p, whereas the computation of the kernel is proportional to N sd ,
where N s is the number of support vectors. So N s would need to be larger than d

p−1 , in order for the kernel
approach to be more computationally intensive and this would normally only occur for p ≤ 2 . The boundary in Fig.
2 was found with a non-homogeneous quadratic kernel.

A potential problem can occur when the data is not separable using a given kernel. An example of this is
shown in Figs. 3 and 4, where the data cannot be separated with a linear kernel, due to an outlier. Then the
assumptions leading to Eq. (1) no longer hold. To overcome this, one can introduce positive slack variables δ, which
measure how far the points, which are on the wrong side of the boundary, are from the optimal separating
hyperplanes. The constraint equation (2) then becomes,

 yi w ⋅ x i + b()− 1+ i ≥ 0 , (14)

Since δ measures how far the corresponding point is on the wrong side of the hyperplane, one wants to minimize the
total amount of this discrepancy. A convenient way to do this is to add another term to the objective function.
Choosing the error term to be the sum of the deviations, results in the Lagrangian in Eq. (3) becoming4-6,

LP =

1
2

||w ||2 +C i∑ − i y i w ⋅ x i + b()∑ + i∑ (1 − i) − i i∑ (15)

where is a Lagrange multiplier added to force to be positive. A larger value for the user chosen constant C,
corresponds to a higher penalty for points on the wrong side of the boundary. Setting the derivative of Eq. (15), with
respect to w and b, to zero, still results in Eqs. (4a) and (4b). Setting the derivative, with respect to , to zero,
results in C = i + i , which, when combined with Eqs. (4a) and (4b), and inserted into Eq. (15), causes the dual
Lagrangian to be the same as Eq. (5). The latter relation also forces to be less than C. Hence, when the additional
penalty term has the form given, the optimization solution is independent of the slack variables and their associated
Lagrange multipliers. The only effect of this additional term is to restrict the original Lagrange multipliers to,
 0 ≤ ≤ C , instead of being simply non-negative.

Figures 3 and 4 illustrate the non-separable case, where the data points are the same as in Fig. 1, but with an
outlier added. Figure 3 shows the results of using the standard form for computing the separating hyperplane (C=∞),

Fig. 3: Linearly non-separable data with C=∞. Fig. 4: Linearly non-separable data with C=10.

Fig. 5: Digits 1-60 from the MNIST training database.

UNCLASSIFIED

UNCLASSIFIED

with a linear kernel. Notice the
effect that the outlier had on the
computed boundary and that
nearly all the data points are
support vectors. If we relax the
error and choose C=10, then
Fig. 4 results, whose separating
hyperplane is closer to that of
Fig. 1. In this case, the effect
of the outlier has been
minimized, and there are fewer
support vectors required to
define the boundary.

Results

In the past, we have used a variety of means to extract information from images, including statistical
measures from multiresolution levels, with only limited success. We had considered using the entire image as a
feature vector, instead of taking bits and pieces, but the dimensionality problem was an obstacle. The feature vector
for a 32x32 image would be 1,024 elements long and would require a massive amount of training data to train a
neural network, for example. However, the Support Vector Machine (SVM) has many nice properties that minimize
the ‘curse’ of dimensionality. After extensively modifying an SVM toolbox13, developed in MATLAB, we tested
our algorithms on two data sets.

The first example was taken from the standard MNIST database7 of handwritten digits, 0-9, which consists
of a 60,000 image training set and a 10,000 image testing set. The database mixes two separate databases from
NIST, one using Census Bureau employees and the other using high school students. There are approximately 250
different writers in the training set, who are different from the writers in the testing set. Samples of the images are
shown in Fig. 5. As stated previously, we simply input the entire image into SVM as a feature vector. Because SVM
is only a binary classifier, it is necessary to train ten separate classifiers for each digit versus all the remaining digits.
To classify an image, one runs the sample through each classifier and
chooses the one with the highest score. There are other ways to
determine the classification from the output of each classifier6, but we
chose this ‘winner take all’ method for simplicity.

vectors are superfluous to the training. Training with this reduced
set, gave us the parameters for the separating hyperplanes for each
digit. We then used the entire 10,000 sample testing set to evaluate
the classification properties of the SVM. The results of this ten class
problem are shown in Table 1, where the correct values for the digits, 0-9, are in the first row and the SVM
predictions are in the first column. The overall correct classification rate was over 93% on the testing set. This is
quite good considering that the feature vector had 784 elements and we only used 800 training samples. In addition,
note that the writing subjects in the testing set are different than in the training set. Other implementations of SVM
obtain close to 1% error rates7, when training with the full 60,000 sample training set.

Emboldened by our success with the digit classification, we turned to vehicle classification. We obtained
(512x640) RGB digital images of five different vehicles (1 HMMWV and 4 trucks), taken from different positions
about the front of the vehicles. To facilitate classification, we converted the images to grayscale and reduced the
resolution to (16x20). Examples of the imagery, before and after, are shown in Fig. 6 and have been resized for
display purposes. Since we had a limited number of images for each vehicle, we resorted to a jackknife approach for
training, where we randomly chose 30 out of 50 images to train with and then tested with the remainder. We ran
through 50 iterations of this and averaged the results, which are shown in Table 2. Again, the columns label the
correct vehicle and the rows label the predicted vehicle. The overall classification rate was 96%.

Since we had limited time and computer resources for this problem, we
were not able to train the system on the entire data set. In fact, we used a very
small segment of the data. The training speed of the SVM is proportional to the
number of training samples rather than the length of the feature vectors. We
trained with 800 samples for each digit and even here, we used an iterative
approach. First we trained on 100 sample segments and then took the support
vectors from each of these and combined two at a time to train again. Using three
levels of this binary tree procedure, we arrived at our final training feature vectors.
The purpose of this filtering or chunking procedure was to find those feature
vectors that had the best chance to be support vectors, since those vectors which
are not support

Digit 0 1 2 3 4 5 6 7 8 9
0 96.9 0.1 1.1 0.1 0.1 0.9 0.9 0.0 0.5 0.4
1 0.1 98.1 0.7 0.0 0.5 0.1 0.3 2.3 0.5 0.6
2 0.1 0.4 91.1 1.2 0.2 0.0 0.4 1.8 0.3 0.0
3 0.1 0.2 0.6 93.5 0.0 2.9 0.0 0.2 2.3 1.0
4 0.4 0.1 0.8 0.1 94.7 1.1 2.0 0.8 1.5 3.2
5 0.2 0.1 0.2 1.7 0.0 90.2 1.1 0.0 1.4 0.2
6 0.8 0.3 1.5 0.1 0.9 1.5 94.3 0.0 0.4 0.1
7 0.0 0.1 1.6 1.6 0.2 0.4 0.1 91.8 0.9 1.6
8 0.6 0.8 2.2 1.1 0.4 1.8 0.8 0.0 91.0 0.9
9 0.7 0.0 0.3 0.7 3.0 1.0 0.0 3.1 1.1 92.1

Table 1: Classification table for MNIST problem.

Vehicle 1 2 3 4 5
1 99.0 0.2 2.7 0.0 0.2
2 0.3 96.9 1.7 0.1 0.4
3 0.7 0.0 92.0 0.1 1.0
4 0.0 1.8 0.0 98.5 4.6
5 0.0 1.1 3.6 1.3 93.8

Table 2: Classification table for vehicles.

UNCLASSIFIED

UNCLASSIFIED

Summary

In summary, we have outlined a relatively new method for classification problems, the Support Vector
Machine (SVM). The advantages of the SVM approach are that it is a wide margin classifier, which gives good
results even for sparse data sets, it is outlier resistant, and the training speed is independent of the feature vector
length. Disadvantages are that the training speed increases rapidly with the number of training samples and that the
testing phase can be slow if there are a large number of support vectors. Both of the latter problems are being
addressed by the SVM community. We demonstrated good classification results on two data sets, one of handwritten
digits and the other of military vehicles. Future work consists of improving the training and testing speed and
investigating the usefulness of preprocessing the data.

References

1) R.E. Karlsen et. al, "Comparative study of wavelet methods for ground vehicle signature analysis", Wavelet
Applications III, ed. H.H.Szu, SPIE Proc. 2762, 314 (1996).

2) R.E. Karlsen, Grant R. Gerhart and D.J. Gorsich, ‘Wavelet-based ground vehicle acoustic recognition system’,
Proc. 7th Ground Target Modeling and Validation Conf., Houghton, MI, 249 (1996).

3) D.J. Gorsich, R.E. Karlsen and G.R. Gerhart, ‘The arrival of support vector machine and their impact on the
signature community’, Proc. 9th Ground Target Modeling and Validation Conf., Houghton, MI, to be published
(1998).

4) V. Vapnik, The Nature of Statistical Learning, Springer Verlag (1995).

5) C.J.C. Burges, ‘A tutorial on support vector machines for pattern recognition’, Data Mining and Knowledge
Discovery 2, 1 (1998).

6) B. Schölkopf, C.J.C. Burges, and A.J. Smola, eds., Advances in Kernel Methods, Support Vector Learning, MIT
Press (1999).

7) Y. Lecun et al., ‘Comparison of learning algorithms for handwritten digit recognition’, Proc. Int. Conf. Artificial
Neural Networks II, 53 (1995).

8) D.G. Luenberger, Linear and Nonlinear Programming, Addison-Wesley (1984).

9) R. Fletcher, Practical Methods of Optimization, John Wiley and Sons (1987).

10) D.P. Bertsekas, Nonlinear Programming, Athena Scientific (1995).

11) W. Karush, ‘Minima of functions of several variable with inequalities as side constraints’, Master’s Thesis, Dept.
of Mathematics, Univ. of Chicago (1939).

12) H.W. Kuhn and A.W. Tucker, ‘Nonlinear programming’, Proc. 2nd Berkeley Symp. On Mathematical Statistics
and Probabalistics, 481 (1951).

13) S. Gunn, ‘Support vector machines for classification and regression’, Technical Report, Image Speech and
Intelligent Systems Group, Univ. of Southampton (1998).

Fig. 6: Samples of vehicle imagery, original and reduced resolution.

